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Abstract - Consider a cooling process described by a nonlinear heat equation. We are interested to
recover the initial temperature from temperature measurements which are available on a part of the
boundary for some time. Up to now even for the linear heat equation such problem has been usu-
ally studied as a nonlinear ill-posed operator equation, and regularization methods involving Fréchet
derivatives have been applied. We propose a fast derivative-free iterative method. Numerical results are
presented for the glass cooling process, where nonlinearity appears due to radiation.

1. INTRODUCTION

In many cooling processes (e.g., in glass production [16,14], polymer processing [11,10]) it is important
to avoid large temperature differences inside the material. However, measurements of the temperature
inside the material is usually extremely difficult and sometimes even impossible. On the other side, the
boundary temperature measurements can be made much easier. Thus, we are faced with the problem of
reconstructing the temperature inside the material from the temperature on its boundary.

We will consider a cooling process, which is modelled by the heat equation with a source term non-
linearly depended on the temperature. Since the temperature in the body is uniquely determined by the
initial temperature, it is sufficient to reconstruct only the initial temperature.

Previously, reconstruction of the initial temperature from boundary measurements was considered
only for the linear heat equation (see [11, 10, 6]) with source terms independent of the temperature. In
[11,10] the problem was formulated as a constrained minimization problem. Minimization was performed
by the conjugate gradient method, resulting in the necessity to compute Fréchet derivatives. Extension
of this idea to a nonlinear heat equation results in both theoretical and computational difficulties. In [6]
the initial temperature was considered as the solution to some operator equation. Although the original
equation was nonlinear, using a proper affine decomposition [4] it was reduced to a linear equation. We
propose to use this reduction in constructing an iterative method for our problem. This method does not
involve computation of derivatives. Each iteration consists of solving an ill-posed linear equation with a
fixed operator, which has to be regularized. The proposed method does not depend on the concrete type
of the nonlinear source term and can be easily applied for multidimensional problems.

The structure of the paper is as follows. In Section 2 we present the model for the cooling of a glass
plate, which leads to a nonlinear heat equation in 1D due to heat radiation effects. We use this model
as a prototype for a general nonlinear heat equation. We also formulate the nonlinear operator equation
for the initial temperature. The proposed iterative method and regularization issues are presented in
Section 3. Numerical results are presented in Section 4. Finally we make conclusions and give an outlook
in Section 5.

2. PROBLEM FORMULATION

2.1. Mathematical model for the cooling of a glass plate

Let us first present the mathematical model for the cooling of a hot glass plate, which is a semitransparent
material. In this process one usually neglects variation of the plate temperature along its height and
width and considers spatial dependance of the temperature only on the thickness [17,11,9,3]. Thus, the
temperature T (z, t) is a function of the thickness z ∈ [0, l] and time t ∈ [0, tf ].

Note that for the processes involving high temperatures, heat transfer by radiation needs to be taken
into account. The energy gain by radiation is characterized by the so-called intensity I(~r, t, ~s, ν), which
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is, in general, a function of position ~r, time t, direction ~s and frequency ν. In analogy, we may assume
that the intensity depends actually only on thickness z and direction coordinate µ ∈ [−1, 1] along the
thickness. The energy loss by radiation is characterized by Planck’s function

P (T, ν) =
2 hp ν3n2

g

c2
0

(

e
hp ν

kB T − 1

)

−1

,

where hp, kB are Planck’s and Boltzmann’s constants, c0 is the speed of light in vacuum and ng is
refractive index of the material.

In the heat equation the radiation effects are represented as an additional nonlinear source term

cm ρm

∂T

∂t
= kh

∂2T

∂z2
− 2π

∫

[ν1,∞)

κ(ν)







∫

[−1,1]

(P (T, ν) − I(z, t, µ, ν)) dµ






dν, (1)

where cm, ρm kh are the specific heat, the density and the thermal conductivity of the material which
are assumed to be constant. The function κ(ν) is the absorption coefficient defined in the so-called
semitransparent frequency region [ν1,∞). Eqn. (1) is equipped with the following boundary and initial
conditions

−kh
∂T
∂z

(0, t) = ε π
∫

[0,ν1]

(P (Ta, ν) − P (T (0, t), ν))dν

kh
∂T
∂z

(l, t) = ε π
∫

[0,ν1]

(P (Ta, ν) − P (T (l, t), ν))dν

T (z, 0) = u(z)

(2)

where ε is the hemispherical emissivity and Ta is the ambient temperature. In (2) we have neglected
convective heat exchange along the boundary. This is justified for large temperatures, when radiative
heat exchange is dominant.

The intensity I(z, t, µ, ν) satisfies the radiative transfer equation

µ
∂I

∂z
= κ(ν)(P (T, ν) − I), (3)

which is equiped with the following boundary conditions

I(0, t, µ, ν) = P (Ta, ν), for µ > 0
I(l, t, µ, ν) = P (Ta, ν), for µ < 0.

(4)

The well-posedness of the coupled system (1)-(4) has been rigorously shown for some particular cases,
see [7,2] and the references therein. One possible numerical method for its solution can be found in [1].
We would like briefly describe it here. First of all, we assume that semitransparent frequency region
[ν1,∞) is divided on M spectral bands

[ν1,∞) = [ν1, ν2) ∪ [ν2, ν3) ∪ . . . ∪ [νM ,∞)

such that
κ(ν) = κk for ν ∈ [νk, νk+1).

Then one considers integrated spectral characteristics

Pk(T ) =
∫

[νk,νk+1]

P (T, ν) dν

Ik(. . .) =
∫

[νk,νk+1]

I(. . . , ν) dν,

and the integral
∫

[ν1,∞)

· dν reduces to the sum
M
∑

k=1

· involving Pk and Ik . For approximating the integral

∫

[−1,1]

· dµ one uses so-called Discrete Ordinates method (SP -approximation) [8, p. 541] which consists in

choosing numbers {µi, ωi}
P
i=1 such that

∫

[−1,1]

Ik(. . . , µ)dµ ≈

P
∑

i=1

Ik(. . . , µi)ωi.
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Thus, the whole source term in (1) is approximated by

Fappr(T ) = 2π
M
∑

k=1

κk

[

2Pk(T ) −
P

∑

i=1

Ik(z, t, µi)ωi

]

,

with functions Ik(z, t, µi) determined by equations

µi

∂Ik

∂z
= κk(Pk(T ) − Ik(z, t, µi)).

These equations are approximately solved by some finite difference approximation of derivative ∂
∂z

. Fi-
nally, eqn. (1) is also approximated by a finite difference scheme.

2.2. Inverse problem for a general heat equation with a nonlinear source term

Let us write (1) and (2) in the following scaled and compact form



















∂T

∂t
=

∂2T

∂z2
− F (T )

n(zb)
∂T
∂z

(zb, t) = B(T (zb, t)), for zb ∈ {0, l}
T (z, 0) = u(z)

(5)

where n(zb) = −1 for zb = 0, and n(zb) = 1 for zb = l. If the initial temperature were known, we
would be able to obtain the temperature inside the material for later time. But the measurements of
the temperature inside a hot body are extremely difficult, and thus the initial data u(z) is unknown.
Fortunately, we have boundary temperature measurements at hand. The boundary temperature is often
known not on the whole boundary but only on some part of it. Since in 1D the boundary consists only of
two points {0, l}, we assume that the temperature D(t) is known at the point zb = 0 in the time interval
[0, tf ]. Let R : L2(0, l) → L2(0, tf ) denote a nonlinear operator which maps the initial temperature to
the boundary temperature. Then, the initial temperature u(z) satisfies the nonlinear operator equation

R u = D. (6)

In case of source and flux terms in (5) not depending on the temperature, the operator equation for
the initial temperature was studied in [6]. Since we will use this equation in the iterative method for the
solution of (6), we state it for later reference. For this purpose, examine the linear heat equation



















∂T

∂t
=

∂2T

∂z2
− f(z, t)

n(zb)
∂T
∂z

(zb, t) = b(zb, t), for zb ∈ {0, l}
T (z, 0) = u∗(z)

Denote the corresponding boundary temperature at zb = 0 as d(t) for t ∈ [0, tf ]. Consider an operator
L : L2(0, l)×F ×B → L2(0, tf ) which maps functions u∗(z) ∈ L2(0, l), f(z, t) ∈ F , b(zb, t) ∈ B to the
function d(t), where F and B are admissible function spaces for source and flux terms. So, the initial
temperature u∗(z) satisfies the operator equation

L(u∗, f, b) = d. (7)

If it holds that f 6= 0 or b 6= 0, then this equation is nonlinear with respect to u∗. In the next section
we show how one can transform it to a linear equation. This transformation will be used in the iterative
method for the solution of (6).

3. A DERIVATIVE-FREE ITERATIVE METHOD

To transform eqn. (7) to a linear one, we use the following affine decomposition

L(u∗, f, b) = L(u∗, 0, 0) + L(0, f, b). (8)

The operator L(u∗, 0, 0) depends linearly on u∗ and eqn. (7) becomes

L(u∗, 0, 0) = d − L(0, f, b). (9)
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This approach was first proposed in [4] and numerically applied in [6]. But as it is documented in [13],
in the case when u∗ satisfies inhomogeneous boundary condition b, the numerical solution of (9) yields
approximations with wrong derivatives at the part of the boundary where there are no measurements.
Thus, instead of (8) we propose another affine decomposition

L(u∗, f, b) = L(u∗ − v(b), 0, 0) + L(v(b), f, b), (10)

where v(b) is some function satisfying

n(zb)
d

dz
v(b)(zb) = b(zb, 0) for zb ∈ {0, l}.

Using (10) we rewrite (7) as
L(u∗ − v(b), 0, 0) = d − L(v(b), f, b).

Now consider the nonlinear heat eqn. (5). First, note that the functions F, B, v(B) can be considered
as functions of the initial temperature u. Indeed, let S : L2(0, l) → L2 ( (0, l) × (0, tf ) ) denote a solution
operator which maps the initial temperature to the solution of (5). Then we define the operators

F (T (z, t))) = F ( S(u(z)) ) =: F(u(z)),
B(T (z, t))) = B( S(u(z)) ) =: B(u(z)),

v(B) = v(B( S(u(z)) )) =: v(u(z)).

The operator eqn. (6) can be written using the operator L as follow

L(u,F(u),B(u)) = D.

Employing (10) this equation becomes

L(u − v(u), 0, 0) = D − L(v(u),F(u),B(u)).

With the notations A w := L(w, 0, 0) and G u := L(v(u),F(u),B(u)) this reads

A(u − v(u)) = D − G u. (11)

For the solution of (11) we propose the following iterative procedure:

1. Choose an initial guess u0, e.g. u0(z) = D(0) for all z ∈ [0, l].

2. For k = 0, 1, 2...

• solve the linear operator equation

A wk+1 = D − G uk (12)

• add v(uk) to wk+1

uk+1 = wk+1 + v(uk)

Remark. Clearly, step 2 is repeated until some stopping criterion is satisfied.

Note that the linear operator eqn. (12) is ill-posed [6]. Thus, it is extremely sensitive to the noise
in the data D. Due to measurement, modeling and discretization errors, in practice we always have
noisy data Dδ, such that ‖D−Dδ‖ ≤ δ. Hence, special regularization methods need to be applied for the
solution of (12) (for a general introduction to this subject see for example [5]). Moreover, inverse problems
arising from parabolic equations are exponentially or severely ill-posed [4]. Tikhonov regularization is
appropriate for such problems [12]. Thus, in each iteration we actually solve

(αI + A∗ A) wk+1 = A∗( Dδ − G uk ), (13)

where α is a regularization parameter, I is the identity operator and A∗ is the adjoint operator. To
choose the regularization parameter α we use the so-called quasi-optimality criterion, first introduced in
[15]. This criterion does not depend on the noise level δ and consists in the following steps:
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1. Select a finite number of regularization parameters

0 < α0 < α1 < · · · < αm,

which are part of a geometric sequence, i.e. αi = α0 qi with q > 1.

2. For each αi solve (13) and obtain solutions wk+1,αi
.

3. Among {wk+1,αi
}m

i=0 choose wk+1,αj
such that

‖wk+1,αj
− wk+1,αj−1

‖ = min
{

‖wk+1,αi
− wk+1,αi−1

‖, i = 1, 2, . . . , m
}

,

where ‖ · ‖ denotes the norm in the space L2(0, l).

The realization of the proposed method and numerical results are discussed in the next section.

4. NUMERICAL RESULTS

For the numerical solution of (13) we use a Galerkin discretization. It requires a collection of finite

dimensional subspaces {XN} such that dim XN = N and
∞
⋃

N=1

XN = L2(0, l). Let {ϕN
i }N

i=1 be a basis of

XN . Then for a fixed discretization parameter N the approximate solution wN
k+1 =

N
∑

j=1

cj ϕN
j of (13) can

be found by solving the linear system

α
N

∑

j=1

cj (ϕN
j , ϕN

i ) +
N

∑

j=1

cj (AϕN
j , AϕN

i ) = (Dδ − G uk, AϕN
i ), i = 1, ..., N. (14)

We choose the subspace XN as the set of piecewise linear splines with N equidistant knots on [0, l].
For a given initial temperature û(z) we generated the data D(t) by the numerical solution of the

coupled system of eqns (1)-(4). Thus, we have the values of D(t) at a finite number of points {ts} ⊂ [0, tf ].
The noise is simulated as in [11,10], i.e.

Dδ(ts) = D(ts) + δr ξs,

where {ξs} are independent random variables with uniform distribution over [−1, 1]. The used physical
parameters are collected in Table 1. The values of {µi, ωi} were choosen as in S8-approximation [8, p. 548].

cm 1000 J/(kg · K)
ρm 2500 kg/m3

kh 1 W/(m · K)
ng 1
ε 1
Ta 300 K
l 0.01 m
tf 25 sec

k νk, 1013 Hz κk, 1/m
1 2.95 7136.1
2 3.45 567.32
3 3.76 267.98
4 4.59 27.98
5 5.17 15.45
6 5.91 7.7
7 6.89 0.5
8 103.38 0.4

Table 1: This is a table of physical parameters used for numerical results.

We present numerical results which show the typical behavior of the method. The chosen initial
temperature û has a symmetric profile with values between 800 K and 1200 K.

Let {uN
k } be the sequence of approximations for a fixed discretization N . The errors ‖û − uN

k ‖ with
respect to the iteration number k for (δr = 0, N = 41), (δr = 2, N = 41), and (δr = 10, N = 11) are
plotted in Figure 1. One observes fast convergence of approximating sequence {uN

k }. Note that the
smaller the noise level, the better is final approximation.

The discretization parameter N has a significant influence on the reconstruction. In fact, the dis-
cretization brings additional noise. First, instead of the operator eqn. (13) we solve the discrete system
of eqns (14). Secondly, the functions AϕN

i and the scalar products in (14) can be computed only approx-
imately. Thus, the discretization and the noise need to be balanced which is illustrated by the numerical
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Figure 1: This is a picture of the error ‖û− uN
k ‖ for different discretization and noise levels.

examples in Figure 2. If no random noise (i.e. δr = 0) is added, then increasing N will give better
results. In the presence of the noise the numerical results suggest, that there is a strong nonmonotonic
dependence of the reconstruction accuracy on the discretization. Thus, criteria are needed for choosing
the discretization adaptively depending on the data noise.

5. CONCLUSIONS

We presented a fast method of the initial temperature reconstruction for nonlinear heat equations with
source terms. Its numerical performance was checked in 1D for the nonlinear model of a glass plate
cooling. Further research will concentrate on:

• a rigorous analysis of the convergence of the proposed method;

• the development of criteria for the choice of discretization parameters;

• the implementation of the proposed method for more dimensional (2D,3D) cooling processes.
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Figure 2: These are pictures of reconstructions for different random noise and different discretizations.
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